Agents#
Datatune Agent allows large language models (LLMs) to autonomously plan and execute data transformation steps using natural language prompts.
Basic Usage#
import datatune as dt
from datatune.llm.llm import OpenAI
import dask.dataframe as dd
# Initialize LLM
llm = OpenAI(model_name="gpt-3.5-turbo")
# Load data
df = dd.read_csv("data.csv")
# Initialize Agent
agent = dt.Agent(llm,verbose=True)
# Transform data with natural language prompt
prompt = "your prompt for data transfromation"
df = agent.do(prompt,df,verbose=False)
# Compute DataFrame
result.compute().to_csv("transformed_data.csv")
Parameters#
llm(LLM, required): The large language model backend to be used for data tranformations (e.g. OpenAI, Azure etc)verbose(bool, optional, default=False): If set toTrue, the agent will print the full generated plan, show detailed information for each transformation step and display error messages if a step fails.
Methods#
Agent.do()#
do(prompt: str, df: dask.dataframe.DataFrame) -> dask.dataframe.DataFrame
Executes a natural language prompt to transform the given dataframe.
Parameters
prompt(str, required): Natural language instruction describing the desired transformation.df(dask.dataframe.DataFrame, required): Input dataframe to transform.verbose(bool, optional, default=None): Controls logging behavior for this call.If set to
True, the agent will print the full generated plan, show detailed information for each transformation step and display error messages if a step fails.If
verboseis not provided, method uses Agent’s verbose setting.
Returns
pandas.DataFrame: A transformed pandas dataframe.
Examples#
For more advanced usage, see the examples folder.